Mit einem neuen Verfahren stellen Forscher dünne, robuste und gleichzeitig poröse Halbleiterschichten her. Ein viel versprechendes Material, beispielsweise für kleine, leichte und langlebige flexible Solarzellen oder Elektroden für leistungsfähigere Akkus.
Die Beschichtung des Plättchens, das Professor Thomas Fässler, Inhaber des Lehrstuhls für Anorganische Chemie mit Schwerpunkt Neue Materialien an der TU München in Händen hält, schimmert wie Opal. Und sie hat erstaunliche Eigenschaften: Sie ist hart wie ein Kristall, hauchdünn und federleicht. Die Bauweise spart nicht nur Platz, sondern schafft auch große Grenzflächen, die den Wirkungsgrad erhöhen.
„Unser Ausgangsmaterial kann man sich wie ein großporiges Gerüst vorstellen, ähnlich aufgebaut wie eine Bienenwabe. Die Wände bestehen aus anorganischem, halbleitendem Germanium, das elektrische Ladungen erzeugen und speichern kann. Weil die Wabenwände hauchdünn sind, müssen Ladungen keine weiten Wege zurücklegen“, erklärt Fässler.
Strukturen exakt reproduzierbar
Um sprödes, hartes Germanium in eine flexible und poröse Schicht zu verwandeln, mussten die Forscher allerdings einige Tricks anwenden. Traditionell werden Ätztechniken eingesetzt, um die Oberfläche von Germanium zu strukturieren. Diese Top-down-Methode ist jedoch auf atomarer Ebene schwer kontrollierbar. Das neue Verfahren löst dieses Problem.
Zusammen mit seinem Team hat Fässler einen Syntheseweg etabliert, der die gewünschten Strukturen exakt und reproduzierbar erzeugt: Ausgangsmaterial sind Cluster aus jeweils neun Germanium-Atomen. Weil diese Cluster elektrisch geladen sind, stoßen sie sich ab, solange sie sich in Lösung befinden. Eine Vernetzung findet erst statt, wenn das Lösungsmittel abgedampft wird. Sie kann durch einfaches Erhitzen auf 500 Grad Celsius oder chemisch erfolgen. Dazu gibt man beispielsweise Germaniumchlorid zu. Nimmt man stattdessen andere Chloride, wie zum Beispiel Phosphorchlorid, so lassen sich die Germaniumstrukturen auf einfachste Weise dotieren. Die Eigenschaften der resultierenden Nanomaterialien können die Wissenschaftler damit gezielt einstellen.
Graphit in Akkus ersetzen
„Kombiniert mit Polymeren eignen sich poröse Germanium-Strukturen für die Entwicklung einer neuen Generation stabiler, leichter und flexibler Solarzellen, die unterwegs Handy, Kamera und Laptop aufladen könnten“, erläutert Physiker Peter Müller-Buschbaum, Professor für Funktionelle Materialien der TU München.
Als nächstes wollen die Forscher die neue Technik nutzen, um auch poröse Silizium-Schichten herzustellen. Die Schichten werden derzeit auch als Anode für wieder aufladbare Batterien getestet. Sie könnten die bisher üblichen Graphitschichten in Akkus ersetzen und deren Kapazität verbessern. Gefördert wurde die Entwicklung durch das Programm „Solar Technologies go Hybrid“ des Bayerischen Wissenschaftsministeriums. (N. Petersen)